On abelian group actions and Galois quantizations
نویسندگان
چکیده
منابع مشابه
Weighted completion of Galois groups and Galois actions on the fundamental group
Fix a prime number l. In this paper we prove a conjecture [16, p. 300], which Ihara attributes to Deligne, about the action of the absolute Galois group on the pro-l completion of the fundamental group of the thrice punctured projective line. It is stated below. Similar techniques are also used to prove part of a conjecture of Goncharov [11, Conj. 2.1], also about the action of the absolute Gal...
متن کاملOn the cohomology of discrete abelian group actions
Generalizing a result of Depauw, we prove that the geometric cohomology groups for a Z d action are in any dimension isomorphic to the Feldman-Moore cohomology groups rsp. the algebraic group cohomology groups. This result holds in the smooth, topological or measurable category and for general Polish groups as coeecient groups.
متن کاملCounting Hopf Galois Structures on Non-abelian Galois Field Extensions
Let L be a field which is a Galois extension of the field K with Galois group G. Greither and Pareigis [GP87] showed that for many G there exist K-Hopf algebras H other than the group ring KG which make L into an H-Hopf Galois extension of K (or a Galois H∗object in the sense of Chase and Sweedler [CS69]). Using Galois descent they translated the problem of determining the Hopf Galois structure...
متن کاملPolarizations on abelian subvarieties of principally polarized abelian varieties with dihedral group actions
For any n ≥ 2 we study the group algebra decomposition of an ([ 2 ] + 1)dimensional family of principally polarized abelian varieties of dimension n with an action of the dihedral group of order 2n. For any odd prime p, n = p and n = 2p we compute the induced polarization on the isotypical components of these varieties and some other distinguished subvarieties. In the case of n = p the family c...
متن کاملGalois actions on Q - curves and
We prove two “large images” results for the Galois representations attached to a degree d Q-curve E over a quadratic field K: if K is arbitrary, we prove maximality of the image for every prime p > 13 not dividing d, provided that d is divisible by q (but d 6= q) with q = 2 or 3 or 5 or 7 or 13. If K is real we prove maximality of the image for every odd prime p not dividing dD, where D = disc(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2013
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2013.03.011